

Compact Graph Structure Learning via Mutual Information Compression

Nian Liu nianliu@bupt.edu.cn Beijing University of Posts and Telecommunications China

> Yu Chen hugochen@fb.com Facebook AI United States

Xiao Wang xiaowang@bupt.edu.cn Beijing University of Posts and Telecommunications Peng Cheng Laboratory China

Xiaojie Guo xguo7@gmu.edu JD.COM Silicon Valley Research Center United States Lingfei Wu lwu@email.wm.edu JD.COM Silicon Valley Research Center United States

Chuan Shi* shichuan@bupt.edu.cn Beijing University of Posts and Telecommunications Peng Cheng Laboratory China

WWW 2022 Code: github.com/liun-online/CoGSL

2022.03.20 • ChongQing

Chongging University

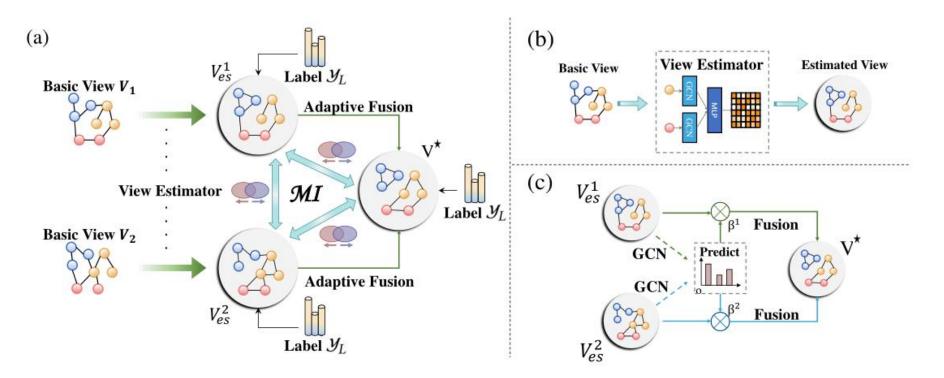
of Technology

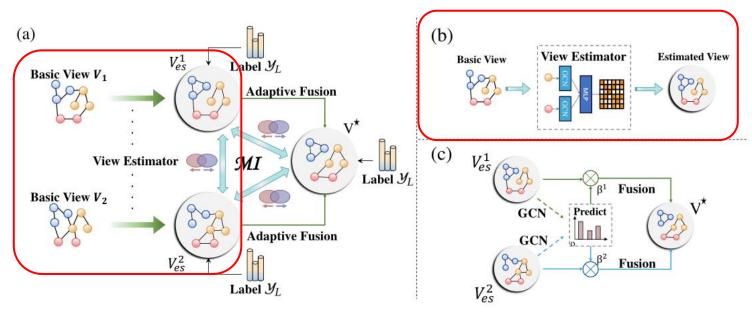
Reported by Chenghong Li

Introduction

• An optimal graph structure should only contain the information about tasks while compress redundant noise as much as possible.

Method




Figure 1: The overview of our proposed CoGSL. (a) Model framework. (b) View estimator. (c) Adaptive fusion.

Basic views:

(1) Adjacency matrix(2) Diffusion matrix(3) Subgraph(4) KNN graph $S = \alpha (I - (1 - \alpha)D^{-1/2}AD^{-1/2})^{-1}, \text{ where } \alpha \in (0, 1]$ $2020_ICML_Contrastive Multi-View Representation Learning on Graphs$

Method

$$GCN(A, H^{(k)}) = D^{-1/2}AD^{-1/2}H^{(k-1)}W^k, \qquad (1$$

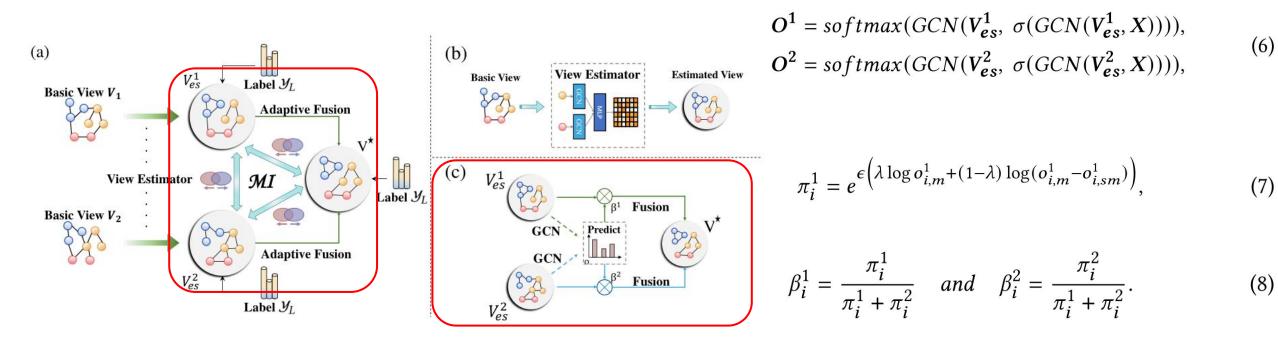
$$Z^{1} = \sigma(GCN(V_{1}, X)), \qquad (2)$$

$$Z^{1} \in \mathbb{R}^{N \times d_{es}}$$

$$w_{ij}^{1} = \mathbf{W} \cdot [z_{i}^{1} || z_{j}^{1}] \mathbf{W} b_{1}, \qquad (3)$$

$$W_{1} \in \mathbb{R}^{2d_{es} \times 1}$$

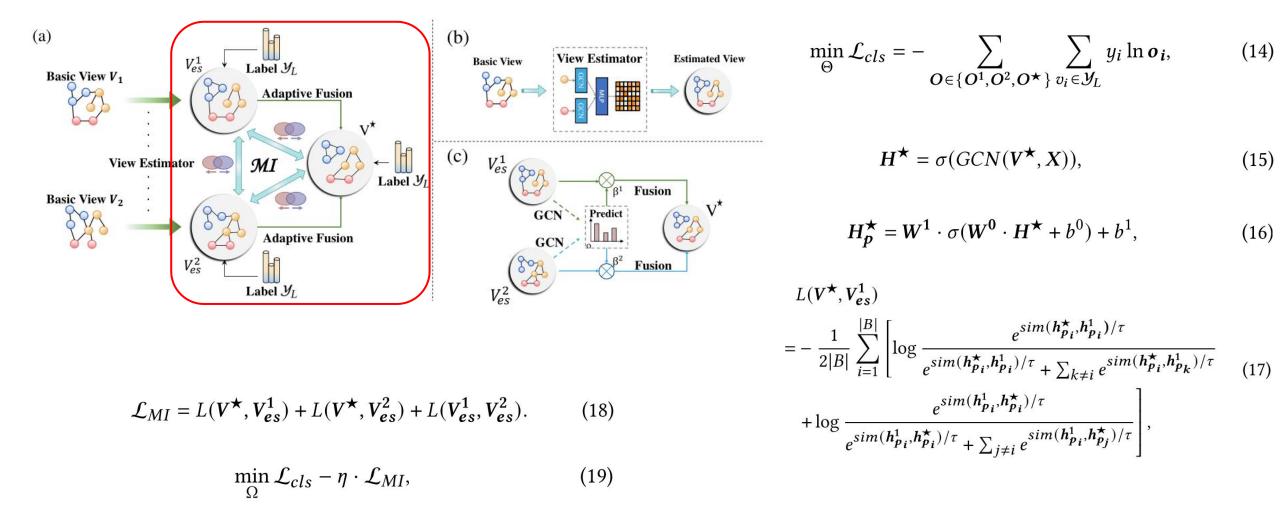
$$b_{1} \in \mathbb{R}^{2d_{es} \times 1}$$


$$p_{ij}^{1} = \frac{\exp(w_{ij}^{1})}{\sum_{k=s_{1}} \exp(w_{k}^{1})}. \qquad (4)$$

 $\sum_{k \in S^1} \exp(w_{ik}^1)^{\cdot}$ only estimate limited scope S^1

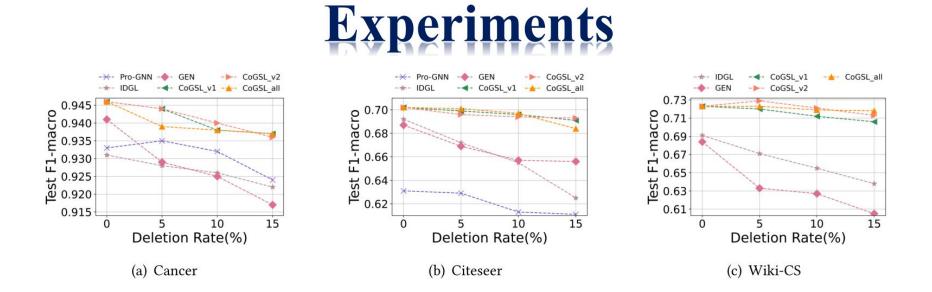
$$V_{es}^1 = V_1 + \mu^1 \cdot P^1, (5)$$

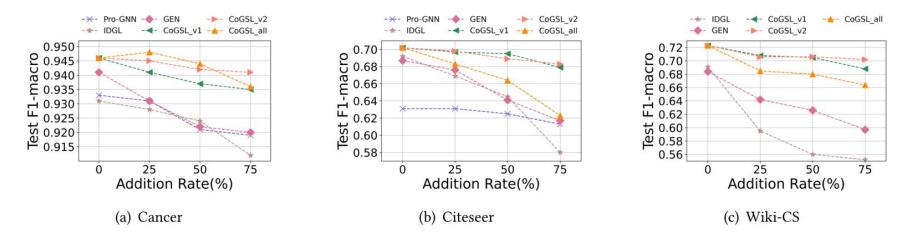
Method



$$\boldsymbol{V_i^{\star}} = \beta_i^1 \cdot \boldsymbol{V_{es_i}^1} + \beta_i^2 \cdot \boldsymbol{V_{es_i}^2}.$$
(9)

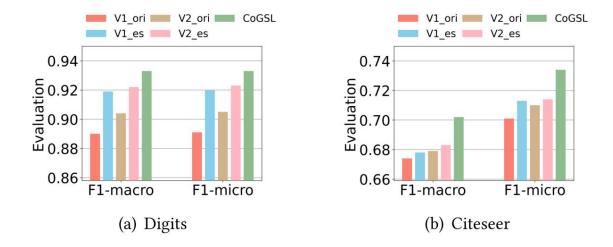
$$O^{\star} = softmax(GCN(V^{\star}, \sigma(GCN(V^{\star}, X)))).$$
(13)




Table 1: Quantitative results ($\% \pm \sigma$) on node classification.(bold: best; underline: runner-up)

Datasets	Metric	DGI	GCA	GCN	GAT	GraphSAGE	LDS	Pro-GNN	IDGL	GEN	CoGSL
Wine	F1-macro	93.6±0.8	94.5±2.7	94.1±0.6	93.6±0.4	96.3±0.8	93.4±1.0	97.3±0.3	96.3±1.1	96.4±1.0	97.9±0.3
	F1-micro	93.6±0.8	94.6±2.4	93.9±0.6	93.7±0.3	96.2±0.8	93.4±0.9	97.2±0.3	96.2±1.1	96.3±1.0	97.8±0.3
	AUC	99.5±0.1	97.8±1.4	99.6±0.2	97.8 ± 0.2	99.4±0.4	99.0±0.1	99.5 ± 0.1	99.6±0.1	99.3±0.2	99.7±0.1
	F1-macro	85.7±1.9	93.4±1.2	93.0±0.6	92.2±0.2	92.0±0.5	83.1±1.5	93.3±0.5	93.1±0.9	94.1±0.8	94.6±0.3
Cancer	F1-micro	87.6±1.4	93.8±1.2	93.3±0.5	92.9±0.1	92.5±0.5	84.8±0.8	93.8±0.5	93.6±0.9	94.3±1.0	95.0±0.3
	AUC	95.2±2.4	97.9±0.6	98.9±0.1	96.9±0.3	96.9±0.5	90.6±0.9	97.8±0.2	98.1±0.3	98.3±0.3	<u>98.5±0.1</u>
	F1-macro	88.9±0.8	89.5±1.4	89.0±1.3	89.9±0.2	87.5±0.2	79.7±1.0	89.7±0.3	92.5±0.5	91.3±1.3	93.3±0.3
Digits	F1-micro	89.0±0.8	89.6±1.5	89.1±1.3	90.0 ± 0.2	87.7±0.2	80.2±0.9	89.8±0.3	92.6±0.5	91.4±1.2	93.3±0.3
	AUC	99.0±0.1	97.6±0.3	98.9±0.2	98.3 ± 0.4	98.7±0.1	95.1±0.1	98.1 ± 0.2	99.4±0.1	98.4±0.9	99.6±0.0
Polblogs	F1-macro	90.9±0.4	95.0±0.2	95.1±0.4	94.1±0.1	93.3±2.5	94.9±0.3	94.6±0.6	94.6±0.7	95.2±0.6	95.5±0.1
	F1-micro	90.9±0.4	95.0 ± 0.2	95.1±0.4	94.1±0.1	93.4±2.5	94.9±0.3	94.6±0.6	94.6±0.7	95.2±0.6	95.5±0.1
	AUC	96.4±0.3	98.2±0.2	98.5±0.0	97.4±0.1	98.1±0.1	98.1±0.4	98.3±0.2	98.2±0.2	98.0±0.6	98.3±0.1
	F1-macro	68.1±0.6	60.9±0.9	67.4±0.3	68.4±0.2	67.1±0.8	69.4±0.7	63.1±0.7	69.2±0.9	68.7±0.5	70.2±0.6
Citeseer	F1-micro	72.1±0.6	64.5±1.1	70.1±0.2	72.2±0.2	70.1±0.7	72.2±0.7	65.6±0.8	72.6±0.6	72.5±0.8	73.4±0.8
	AUC	90.8±0.1	88.5 ± 0.7	89.9±0.2	90.2 ± 0.1	90.5±0.3	91.3±0.3	88.2±0.3	91.1 ± 0.4	88.4±0.5	91.4±0.5
	F1-macro	56.4±0.1	67.1±1.3	68.8±1.7	70.1 ± 0.1	69.2±0.9	54.6±0.5	63.8±2.0	69.1±1.1	68.4±0.3	72.3±0.6
Wiki-CS	F1-micro	61.2 ± 0.2	71.3±1.3	70.8±1.8	73.8±0.3	72.2±0.7	53.7±0.5	68.3±1.2	72.7±0.8	71.1±0.9	75.0±0.3
	AUC	91.8±0.1	93.2 ± 0.4	95.2±0.3	95.6±0.1	95.0±0.3	88.8±2.1	93.3±0.3	92.0±0.2	91.6±1.2	96.4±0.2
MS Academic	F1-macro	88.6±0.2	87.0±1.6	89.4±0.6	86.7±0.6	88.9±0.4	.		89.6±0.6	89.8±0.8	90.5±0.4
	F1-micro	91.4±0.2	89.8±1.2	91.9±0.5	89.0 ± 0.4	91.1±0.2	≂.	-	91.9±0.5	92.0±0.5	92.4±0.5
	AUC	99.1±0.1	99.3±0.2	99.4±0.1	99.2±0.1	99.4±0.0	=	-	99.6±0.1	98.8±0.3	99.4±0.1

Figure 3: Results of different models under random edge deletion.


Figure 4: Results of different models under random edge addition.

Experiments

Table 2: Quantitative results under feature attack.

Datasets	F1-macro	Pro-GNN	IDGL	GEN	CoGSLL
	0.0	93.3	93.1	94.1	94.6
Cancer	0.1	92.9	91.5	92.9	94.2
	0.3	92.6	90.5	91.9	93.6
	0.5	92.2	90.2	90.9	93.4
Citeseer	0.0	63.1	69.2	68.7	70.2
	0.1	55.5	64.1	65.3	67.8
	0.3	44.1	22.6	36.1	49.1
	0.5	36.8	23.3	94.1 92.9 91.9 90.9 68.7 65.3	43.5
Wiki-CS	0.0	-	69.1	68.4	72.3
	0.1	-	63.6	46.8	70.4
	0.3	-	41.6	24.2	46.2
	0.5	-	12.5	18.5	24.2

Figure 5: Test on the effectiveness of view estimator.

Experiments

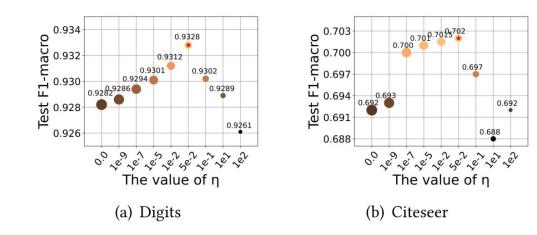


Figure 6: The investigation of change of MI.

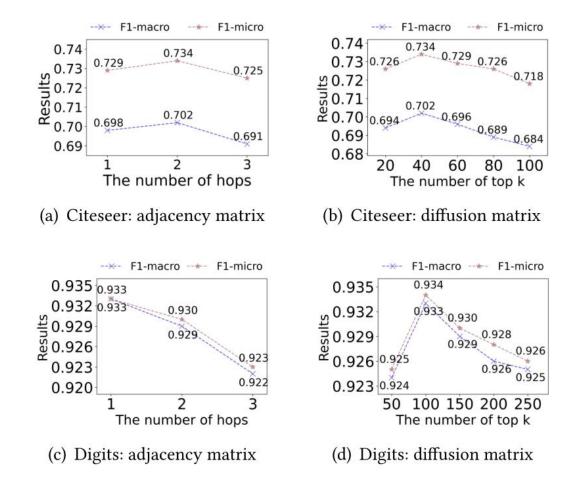


Figure 7: Impact of hyper-parameter scope.

Thanks